A class of exceptional polynomials
نویسندگان
چکیده
منابع مشابه
Exceptional planar polynomials
Planar functions are special functions from a finite field to itself that give rise to finite projective planes and other combinatorial objects. We consider polynomials over a finite field K that induce planar functions on infinitely many extensions of K; we call such polynomials exceptional planar. Exceptional planar monomials have been recently classified. In this paper we establish a partial...
متن کاملZeros of exceptional Hermite polynomials
Exceptional orthogonal polynomials were introduced by Gomez-Ullate, Kamran and Milson as polynomial eigenfunctions of second order differential equations with the remarkable property that some degrees are missing, i.e., there is not a polynomial for every degree. However, they do constitute a complete orthogonal system with respect to a weight function that is typically a rational modification ...
متن کاملA Conjecture on Exceptional Orthogonal Polynomials
Exceptional orthogonal polynomial systems (X-OPS) arise as eigenfunctions of Sturm-Liouville problems and generalize in this sense the classical families of Hermite, Laguerre and Jacobi. They also generalize the family of CPRS orthogonal polynomials introduced by Cariñena et al., [3]. We formulate the following conjecture: every exceptional orthogonal polynomial system is related to a classical...
متن کاملNumerical solution of a class of nonlinear two-dimensional integral equations using Bernoulli polynomials
In this study, the Bernoulli polynomials are used to obtain an approximate solution of a class of nonlinear two-dimensional integral equations. To this aim, the operational matrices of integration and the product for Bernoulli polynomials are derived and utilized to reduce the considered problem to a system of nonlinear algebraic equations. Some examples are presented to illustrate the efficien...
متن کاملA Class of Polynomials* By
00 (— l)k (1.2) m-Y,}L-rLt**, k=0 r k where t takes on the values 00 t = £ cm_¡xm-' (cj in GF(p»)). j'-o Then \p(t) has the linearity properties (1.3) W + u) m + *(u), Hct) = ok(t), for arbitrary c in GF(pH); further from (1.2) it follows that (1.4) ik(xt) = ^"(t) x^(t). In turn (1.4) implies the general relation (1.5) (l)^(Mt) =«*(*(*)), where M is a polynomial in GF(pn) of degree m in x, and
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1994
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-1994-1272675-0